ARMOR - Adjusting Repair and Media Scaling with Operations Research for Streaming Video
نویسنده
چکیده
Streaming multimedia quality is impacted by two main factors: capacity constraint and packet loss. To match the capacity constraint while preserving real-time playout, media scaling can be used to discard the encoded multimedia content that has the least impact on perceived video quality. To limit the impact of lost packets, repair techniques, e.g. forward error correction (FEC), can be used to repair frames damaged by packet loss. However, adding data to facilitate repair requires further reduction of the original multimedia data, making the decision of how much repair data to use of critical importance. Assuming a limited network capacity and the availability of an estimate of the current packet loss rate along a flow path, selecting the best distribution of FEC packets for video frames with inherent interframe encoding dependencies can be cast as a constraint optimization problem that attempts to optimize the quality of the video stream. This thesis presents an Adjusting Repair and Media scaling with Operations Research (ARMOR) system. An analytical model is derived for streaming video with FEC and media scaling. Given parameters to represent network loss as well as video frame types and sizes, if the number of FEC packets per video frame type and media scaling pattern is specified, the model can estimate the video quality at the receiver side. The model is then used in an operations research algorithm to adjust the FEC strength and media scaling level to yield the best quality under the capacity constraint. Four different combinations of FEC type and media scaling method are studied: Media Independent FEC with Temporal Scaling (MITS), Media Independent FEC with Quality Scaling (MIQS), Media Independent FEC with Temporal and Quality Scaling (MITQS), and Media Dependent FEC with Quality Scaling (MDQS). The analytical experiments show: 1) adjusting FEC always achieves a higher video quality than streaming video without FEC or with a fixed amount of FEC; 2) Quality Scaling usually works better than Temporal Scaling; and 3) Media Dependent FEC (MDFEC) is typically less effective than Media Independent FEC (MIFEC). A user study is presented with results from 74 participants analysis shows that the ARMOR model can accurately estimate users’ perceptual quality. Well-designed simulations and a realistic system implementation suggests the ARMOR system can practically improve the quality of streaming video.
منابع مشابه
ARMOR - A system for adjusting repair and media scaling for video streaming
To optimize scarce network resources and present the highest quality video, streaming video systems need adapt to the video content as well as the network conditions. This paper presents ARMOR, a video streaming system that dynamically adjusts repair and media scaling to meet current video and network conditions. In order to adapt effectively, ARMOR, and any dynamic video adaptation system, nee...
متن کاملOperation Research Approach towards Layered Multi - Source Video Delivery
We address the problem of rate scaling of multiple layered video streams in applications such as a multi-camera video surveillance system. This differs from the single video streaming scenario in that relevant information from all sources has to be aggregated and a collective decision made. We propose a scenario to achieve better granularity in quality adaptation by considering inter-source and...
متن کاملImproving P2P Live-Content Delivery using SVC
P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where ...
متن کاملA player for adaptive MPEG video streaming over the Internet
This paper describes the design and implementation of a real-time, streaming, Internet video and audio player. The player has a number of advanced features including dynamic adaptation to changes in available bandwidth, latency and latency variation; a multi-dimensional media scaling capability driven by user-specified quality of service (QoS) requirements; and support for complex content compr...
متن کاملA Method to Reduce Effects of Packet Loss in Video Streaming Using Multiple Description Coding
Multiple description (MD) coding has evolved as a promising technique for promoting error resiliency of multimedia system in real-time application programs over error-prone communicational channels. Although multiple description lattice vector quantization (MDCLVQ) is an efficient method for transmitting reliable data in the context of potential error channels, this method doesn’t consider disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006